Models of the structure and voltage-gating mechanism of the shaker K+ channel.

نویسندگان

  • Stewart R Durell
  • Indira H Shrivastava
  • H Robert Guy
چکیده

In the preceding, accompanying article, we present models of the structure and voltage-dependent gating mechanism of the KvAP bacterial K+ channel that are based on three types of evidence: crystal structures of portions of the KvAP protein, theoretical modeling criteria for membrane proteins, and biophysical studies of the properties of native and mutated voltage-gated channels. Most of the latter experiments were performed on the Shaker K+ channel. Some of these data are difficult to relate directly to models of the KvAP channel's structure due to differences in the Shaker and KvAP sequences. We have dealt with this problem by developing new models of the structure and gating mechanism of the transmembrane and extracellular portions of the Shaker channel. These models are consistent with almost all of the biophysical data. In contrast, much of the experimental data are incompatible with the "paddle" model of gating that was proposed when the KvAP crystal structures were first published. The general folding pattern and gating mechanisms of our current models are similar to some of our earlier models of the Shaker channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkanols inhibit voltage-gated K+ channels via a distinct gating modifying mechanism that prevents gate opening

Alkanols are small aliphatic compounds that inhibit voltage-gated K(+) (K(v)) channels through a yet unresolved gating mechanism. K(v) channels detect changes in the membrane potential with their voltage-sensing domains (VSDs) that reorient and generate a transient gating current. Both 1-Butanol (1-BuOH) and 1-Hexanol (1-HeOH) inhibited the ionic currents of the Shaker K(v) channel in a concent...

متن کامل

A Surprising Clarification of the Mechanism of Ion-channel Voltage-Gating

An intense controversy has surrounded the mechanism of voltage-gating in ion channels. We interpreted the two leading models of voltage-gating with respect to the thermodynamic energetics of membrane insertion of the voltage-sensing ‘module’ from a comprehensive set of potassium channels. KvAP is an archaeal voltage-gated potassium channel whose x-ray structure was the basis for determining the...

متن کامل

Contribution of the S4 Segment to Gating Charge in the Shaker K+ Channel

Voltage-activated ion channels respond to changes in membrane voltage by coupling the movement of charges to channel opening. A K+ channel-specific radioligand was designed and used to determine the origin of these gating charges in the Shaker K+ channel. Opening of a Shaker K+ channel is associated with a displacement of 13.6 electron charge units. Gating charge contributions were determined f...

متن کامل

A Gastropod Toxin Selectively Slows Early Transitions in the Shaker K Channel's Activation Pathway

A toxin from a marine gastropod's defensive mucus, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT), was found to inhibit voltage-gated potassium channels by a novel mechanism. Voltage-clamp experiments with Shaker K channels reveal that externally applied BrMT slows channel opening but not closing. BrMT slows K channel activation in a graded fashion: channels activate progressiv...

متن کامل

Gating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA.

The voltage-dependent gating mechanism of single A-type potassium channels coded for by the Shaker locus of Drosophila was studied by single-channel recording. A-type channels expressed in Xenopus oocytes injected with Shaker B and Shaker D mRNA exhibited gating and voltage dependence that were qualitatively similar to those of the native Shaker A-types channels from embryonic myotubes. In all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 87 4  شماره 

صفحات  -

تاریخ انتشار 2004